Exercise 50

Find the derivative of the function. Simplify where possible.

$$
y=\tan ^{-1}\left(x^{2}\right)
$$

Solution

Use the chain rule and the derivatives of the inverse trigonometric functions listed on page 214.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x} \tan ^{-1}\left(x^{2}\right) \\
& =\frac{1}{1+\left(x^{2}\right)^{2}} \cdot \frac{d}{d x}\left(x^{2}\right) \\
& =\frac{1}{1+x^{4}} \cdot(2 x) \\
& =\frac{2 x}{1+x^{4}}
\end{aligned}
$$

